Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040762

RESUMO

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Receptores CCR8/genética , Ligantes , Quimiocina CCL1/metabolismo , Receptores de Quimiocinas/genética , Anticorpos
2.
Br J Pharmacol ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783572

RESUMO

BACKGROUND AND PURPOSE: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon , koff and KD ) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH: We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon , koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS: Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff , but not KD , correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS: Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.

3.
J Biol Chem ; 299(1): 102729, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410439

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.


Assuntos
Anticorpos Monoclonais , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Humanos , Camundongos , Neoplasias , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia
4.
Nature ; 610(7930): 182-189, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131013

RESUMO

Most current therapies that target plasma membrane receptors function by antagonizing ligand binding or enzymatic activities. However, typical mammalian proteins comprise multiple domains that execute discrete but coordinated activities. Thus, inhibition of one domain often incompletely suppresses the function of a protein. Indeed, targeted protein degradation technologies, including proteolysis-targeting chimeras1 (PROTACs), have highlighted clinically important advantages of target degradation over inhibition2. However, the generation of heterobifunctional compounds binding to two targets with high affinity is complex, particularly when oral bioavailability is required3. Here we describe the development of proteolysis-targeting antibodies (PROTABs) that tether cell-surface E3 ubiquitin ligases to transmembrane proteins, resulting in target degradation both in vitro and in vivo. Focusing on zinc- and ring finger 3 (ZNRF3), a Wnt-responsive ligase, we show that this approach can enable colorectal cancer-specific degradation. Notably, by examining a matrix of additional cell-surface E3 ubiquitin ligases and transmembrane receptors, we demonstrate that this technology is amendable for 'on-demand' degradation. Furthermore, we offer insights on the ground rules governing target degradation by engineering optimized antibody formats. In summary, this work describes a strategy for the rapid development of potent, bioavailable and tissue-selective degraders of cell-surface proteins.


Assuntos
Anticorpos , Especificidade de Anticorpos , Proteínas de Membrana , Proteólise , Ubiquitina-Proteína Ligases , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Neoplasias Colorretais/metabolismo , Ligantes , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Mol Pharm ; 19(5): 1540-1547, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393854

RESUMO

Treatment of age-related macular degeneration (AMD) with anti-vascular endothelial growth factor (VEGF) biologic agents has been shown to restore and maintain visual acuity for many patients afflicted with wet AMD. These agents are usually administered via intravitreal injection at a dosing interval of 4-8 weeks. Employment of long-acting delivery (LAD) technologies could improve the therapeutic outcome, ensure timely treatment, and reduce burden on patients, caregivers, and the health care system. Development of LAD approaches requires thorough testing in pre-clinical species; however, therapeutic proteins of human origin may not be well tolerated during testing in non-human species due to immunogenicity. Here, we have engineered a surrogate porcine antibody Fab fragment (pigG6.31) from a human antibody for testing ocular LAD technologies in a porcine model. The engineered Fab retains the VEGF-A-binding and inhibition properties of the parental human Fab and has stability properties suitable for LAD evaluation. Upon intravitreal injection in minipigs, pigG6.31 showed first-order clearance from the ocular compartments with vitreal elimination rates consistent with other molecules of this size. Application of the surrogate molecule in an in vivo evaluation in minipigs of a prototype of the port delivery (PD) platform indicated continuous ocular delivery from the implant, with release kinetics consistent with both the results from in vitro release studies and the efficacy observed in human clinical studies of the PD system with ranibizumab (PDS). Anti-drug antibodies in the serum against pigG6.31 were not detected over exposure durations up to 16 weeks, suggesting that this molecule has low porcine immunogenicity.


Assuntos
Inibidores da Angiogênese , Degeneração Macular Exsudativa , Animais , Humanos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Injeções Intravítreas , Engenharia de Proteínas , Ranibizumab/uso terapêutico , Suínos , Porco Miniatura/metabolismo , Tecnologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/tratamento farmacológico
6.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263569

RESUMO

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Humanos , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo
7.
Sci Adv ; 8(10): eabm2536, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275719

RESUMO

Human cytomegalovirus (HCMV) represents the viral leading cause of congenital birth defects and uses the gH/gL/UL128-130-131A complex (Pentamer) to enter different cell types, including epithelial and endothelial cells. Upon infection, Pentamer elicits the most potent neutralizing response against HCMV, representing a key vaccine candidate. Despite its relevance, the structural basis for Pentamer receptor recognition and antibody neutralization is largely unknown. Here, we determine the structures of Pentamer bound to neuropilin 2 (NRP2) and a set of potent neutralizing antibodies against HCMV. Moreover, we identify thrombomodulin (THBD) as a functional HCMV receptor and determine the structures of the Pentamer-THBD complex. Unexpectedly, both NRP2 and THBD also promote dimerization of Pentamer. Our results provide a framework for understanding HCMV receptor engagement, cell entry, antibody neutralization, and outline strategies for antiviral therapies against HCMV.

9.
J Transl Med ; 19(1): 517, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930320

RESUMO

BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


Assuntos
Asma , Degeneração Macular , Bioensaio , Biomarcadores , Desenvolvimento de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Interleucina-33 , Sensibilidade e Especificidade
10.
Bioorg Chem ; 116: 105376, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560560

RESUMO

Antitumor immune responses depend on the infiltration of solid tumors by effector T cells, a process guided by chemokines. In particular, the chemokine CXCL10 has been shown to play a critical role in mediating recruitment of CXCR3 + cytolytic T and NK cells in tumors, though its use as a therapeutic agent has not been widely explored. One of the limitations is due to the rapid inactivation of CXCL10 by dipeptidyl peptidase 4 (DPP4), a broadly expressed enzyme that is active in plasma and other bodily fluids. In the present study, we describe a novel method to produce synthetic CXCL10 that is resistant to DPP4 N-terminal truncation. Using a Fmoc solid-phase peptide synthesis approach, synthetic murine WT CXCL10 was produced, showing similar biochemical and biological properties to the recombinant protein. This synthesis method supported production of natural (amino acid substitution, insertion or deletion) and non-natural (chemical modifications) variants of CXCL10. In association with a functional screening cascade that assessed DPP4-mediated cleavage, CXCR3 signaling potency and chemotactic activity, we successfully generated 20 murine CXCL10 variants. Among those, two non-natural variants with N-methylated Leu3 (MeLeu3) and a reduced amide bond between Pro2 and Leu3 (rLeu3), respectively, showed resistance to DPP4 truncation but decreased CXCR3 signaling and chemotactic activity. Interestingly, MeLeu3 and rLeu3 CXCL10 behaved as DPP4 inhibitors, preventing the truncation of WT CXCL10. This study highlights the potential of using Fmoc solid-phase chemistry in association with biochemical and biological characterization to rapidly identify CXCL10 variants with desired properties. These novel methods unlock the opportunity to develop DPP4 resistant CXCL10 variants, as well as other chemokine substrates, while maintaining chemotactic properties.


Assuntos
Quimiocina CXCL10/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Quimiocina CXCL10/síntese química , Quimiocina CXCL10/química , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Pharm Sci ; 110(2): 860-870, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33031788

RESUMO

The port delivery system with ranibizumab (PDS) is an investigational long-acting drug delivery system for the continuous release of ranibizumab, an anti-VEGF biologic, in the vitreous humor. The efficacy of the PDS implant relies on the maintenance of long-term drug stability under physiological conditions. Herein, the long-term stability of three anti-VEGF biologics - ranibizumab, bevacizumab and aflibercept - was investigated in phosphate buffered saline (PBS) at 37 °C for several months. Comparison of stability profiles shows that bevacizumab and aflibercept are increasingly prone to aggregation whereas ranibizumab undergoes minimal aggregation. Ranibizumab also shows the smallest loss in antigen binding capacity after long-term incubation in PBS. Even though the aggregated forms of bevacizumab and aflibercept bind to VEGF, the consequences of aggregation on immunogenicity, implant function and efficacy are unknown. These results highlight the importance of maintaining long-term drug stability under physiologically relevant conditions which is necessary for achieving efficacy with an in vivo continuous drug delivery device such as the PDS implant.


Assuntos
Produtos Biológicos , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Bevacizumab , Injeções Intravítreas , Ranibizumab , Proteínas Recombinantes de Fusão
12.
Nat Cancer ; 1(7): 681-691, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35122038

RESUMO

Inhibiting the programmed death-1 (PD-1) pathway is one of the most effective approaches to cancer immunotherapy, but its mechanistic basis remains incompletely understood. Binding of PD-1 to its ligand PD-L1 suppresses T-cell function in part by inhibiting CD28 signaling. Tumor cells and infiltrating myeloid cells can express PD-L1, with myeloid cells being of particular interest as they also express B7-1, a ligand for CD28 and PD-L1. Here we demonstrate that dendritic cells (DCs) represent a critical source of PD-L1, despite being vastly outnumbered by PD-L1+ macrophages. Deletion of PD-L1 in DCs, but not macrophages, greatly restricted tumor growth and led to enhanced antitumor CD8+ T-cell responses. Our data identify a unique role for DCs in the PD-L1-PD-1 regulatory axis and have implications for understanding the therapeutic mechanism of checkpoint blockade, which has long been assumed to reflect the reversal of T-cell exhaustion induced by PD-L1+ tumor cells.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Antígenos CD28/metabolismo , Células Dendríticas , Humanos , Ligantes , Neoplasias/genética , Receptor de Morte Celular Programada 1/genética
13.
Bioconjug Chem ; 30(11): 2782-2789, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31553572

RESUMO

Treatment of ocular diseases associated with neovascularization currently requires frequent intravitreal injections of antivascular endothelial growth factor (anti-VEGF) therapies. Reducing the required frequency of anti-VEGF injections and associated clinical visits may improve patient adherence to the prescribed treatment regimen and improve outcomes. Herein, we explore conjugation of rabbit and fragment antibodies (Fab) to the biopolymer hyaluronic acid (HA) as a half-life modifying strategy, and assess the impact on Fab biophysical properties and vitreal pharmacokinetics. HA-Fab conjugates of three distinct molecular weights and hydrodynamic radii (RH) were assessed for in vivo pharmacokinetic performance relative to unconjugated Fab after intravitreal injection in rabbits. Covalent conjugation to HA did not significantly alter the thermal stability or secondary or tertiary structure, or diminish the potency of the Fab, thereby preserving its pharmacological properties. Conjugation to HA did significantly slow the in vivo clearance of Fab from the rabbit vitreous in an RH-dependent manner. Compared to free Fab (observed vitreal half-life of 2.8 days), HA-Fab conjugates cleared with observed half-lives of 7.6, 10.2, and 18.3 days for 40 kDa, 200 kDa, and 600 kDa HA conjugates, respectively. This work elucidates a possible strategy for long-acting delivery of proteins intended for the treatment of chronic posterior ocular diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Ácido Hialurônico/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Corpo Vítreo/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Humanos , Injeções Intravítreas , Coelhos , Distribuição Tecidual , Corpo Vítreo/imunologia
14.
Elife ; 82019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237236

RESUMO

Outer membrane proteins (OMPs) in Gram-negative bacteria dictate permeability of metabolites, antibiotics, and toxins. Elucidating the structure-function relationships governing OMPs within native membrane environments remains challenging. We constructed a diverse library of >3000 monoclonal antibodies to assess the roles of extracellular loops (ECLs) in LptD, an essential OMP that inserts lipopolysaccharide into the outer membrane of Escherichia coli. Epitope binning and mapping experiments with LptD-loop-deletion mutants demonstrated that 7 of the 13 ECLs are targeted by antibodies. Only ECLs inaccessible to antibodies were required for the structure or function of LptD. Our results suggest that antibody-accessible loops evolved to protect key extracellular regions of LptD, but are themselves dispensable. Supporting this hypothesis, no α-LptD antibody interfered with essential functions of LptD. Our experimental workflow enables structure-function studies of OMPs in native cellular environments, provides unexpected insight into LptD, and presents a method to assess the therapeutic potential of antibody targeting.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Animais , Antibacterianos/farmacologia , Sítios de Ligação , Mapeamento de Epitopos , Epitopos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Camundongos Endogâmicos BALB C , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Relação Estrutura-Atividade
15.
Sci Rep ; 8(1): 7136, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740124

RESUMO

Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP ß-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of ß-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/imunologia , Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Imunização , Conformação Proteica , Dobramento de Proteína , Transporte Proteico/genética , Transporte Proteico/imunologia , Vacinação
16.
Neuropharmacology ; 136(Pt A): 92-101, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305121

RESUMO

The GABAB receptor was the first G protein-coupled receptor identified as an obligate heterodimer. It is composed of two subunits, GABAB1 containing the agonist binding site and GABAB2 responsible for G protein activation. The GABAB receptor was found to associate into larger complexes through GABAB1-GABAB1 interactions, both in transfected cells and in brain membranes. Here we assessed the possible allosteric interactions between GABAB heterodimers by analyzing the effect of mutations located at the putative interface between the extracellular binding domains. These mutations decrease, but do not suppress, the Förster resonance energy transfer (FRET) signal measured between GABAB1 subunits. Further analysis of one of these mutations revealed an increase in G protein-coupling efficacy and in the maximal antagonist binding by approximately two-fold. Hypothesizing that a tetramer is an elementary unit within oligomers, additional FRET data using fluorescent ligands and tagged subunits suggest that adjacent binding sites within the GABAB oligomers are not simultaneously occupied. Our data show a strong negative effect between GABAB1 binding sites within GABAB oligomers. Accordingly, GABAB receptor assembly appears to limit receptor signaling to G proteins, a property that may offer novel regulatory mechanism for this important neuronal receptor. This article is part of the "Special Issue Dedicated to Norman G. Bowery".


Assuntos
Receptores de GABA-B/metabolismo , Regulação Alostérica , Sítios de Ligação , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligação Proteica
17.
AIDS ; 31(18): 2443-2454, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28926402

RESUMO

OBJECTIVE: In this study, we looked for a new family of latency reversing agents. DESIGN: We searched for G-protein-coupled receptors (GPCR) coexpressed with the C-C chemokine receptor type 5 (CCR5) in primary CD4 T cells that activate infected cells and boost HIV production. METHODS: GPCR coexpression was unveiled by reverse transcriptase-PCR. We used fluorescence resonance energy transfer to analyze the dimerization with CCR5 of the expressed GPCR. Viral entry was measured by flow cytometry, reverse transcription by quantitative PCR, nuclear factor-kappa B translocation by immunofluorescence, long terminal repeat activation using a gene reporter assay and viral production by p24 quantification. RESULTS: Gαi-coupled sphingosine-1-phophate receptor 1 (S1P1) is highly coexpressed with CCR5 on primary CD4 T cells and dimerizes with it. The presence of S1P1 had major effects neither on viral entry nor on reverse transcription. Yet, S1P1 signaling induced NFκB activation, boosting the expression of the HIV LTR. Consequently, in culture medium containing sphingosine-1-phophate, the presence of S1P1 enhanced the replication of a CCR5-, but also of a CXCR4-using HIV-1 strain. The S1P1 ligand FTY720, a drug used in multiple sclerosis treatment, inhibited HIV-1 productive infection of monocyte-derived dendritic cells and of severe combined immunodeficiency mice engrafted with human peripheral blood mononuclear cells. Conversely, S1P1 agonists were able to force latently infected peripheral blood mononuclear cells and lymph node cells to produce virions in vitro. CONCLUSION: Altogether these data indicate that the presence of S1P1 facilitates HIV-1 replicative cycle by boosting viral genome transcription, S1P1 antagonists have anti-HIV effects and S1P1 agonists are HIV latency reversing agents.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Perfilação da Expressão Gênica , HIV-1/crescimento & desenvolvimento , Humanos , Camundongos SCID , Receptores CCR5/biossíntese , Receptores de Lisoesfingolipídeo/biossíntese
18.
J Biol Chem ; 290(40): 24166-77, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26272615

RESUMO

Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor ßKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and ßKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface.


Assuntos
Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Análise Mutacional de DNA , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/metabolismo , Fatores de Crescimento de Fibroblastos/química , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteínas Klotho , Ligantes , Proteínas de Membrana/metabolismo , Mutação , Fosforilação , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Relação Estrutura-Atividade
19.
EBioMedicine ; 2(7): 730-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26288846

RESUMO

Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/ßKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/ßKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/ßKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/ßKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/ßKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.


Assuntos
Tecido Adiposo Marrom/metabolismo , Anticorpos Biespecíficos/farmacologia , Insulina/farmacologia , Proteínas de Membrana/agonistas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Adiponectina/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Humanos , Proteínas Klotho , Macaca fascicularis , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Termogênese/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
20.
Cancer Cell ; 26(6): 923-937, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25465800

RESUMO

Tumors constitute highly suppressive microenvironments in which infiltrating T cells are "exhausted" by inhibitory receptors such as PD-1. Here we identify TIGIT as a coinhibitory receptor that critically limits antitumor and other CD8(+) T cell-dependent chronic immune responses. TIGIT is highly expressed on human and murine tumor-infiltrating T cells, and, in models of both cancer and chronic viral infection, antibody coblockade of TIGIT and PD-L1 synergistically and specifically enhanced CD8(+) T cell effector function, resulting in significant tumor and viral clearance, respectively. This effect was abrogated by blockade of TIGIT's complementary costimulatory receptor, CD226, whose dimerization is disrupted upon direct interaction with TIGIT in cis. These results define a key role for TIGIT in inhibiting chronic CD8(+) T cell-dependent responses.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Neoplasias/imunologia , Receptores Imunológicos/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Coriomeningite Linfocítica/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Multimerização Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...